Origin-specific unwinding of herpes simplex virus 1 DNA by the viral UL9 and ICP8 proteins: visualization of a specific preunwinding complex.
نویسندگان
چکیده
Herpes simplex virus 1 contains three origins of replication; two copies of oriS and one of a similar sequence, oriL. Here, the combined action of multiple factors known or thought to influence the opening of oriS are examined. These include the viral origin-binding protein, UL9, and single-strand binding protein ICP8, host cell topoisomerase I, and superhelicity of the DNA template. By using electron microscopy, it was observed that when ICP8 and UL9 proteins were added together to oriS-containing supertwisted DNA, a discrete preunwinding complex was formed at oriS on 40% of the molecules, which was shown by double immunolabeling electron microscopy to contain both proteins. This complex was relatively stable to extreme dilution. Addition of ATP led to the efficient unwinding of approximately 50% of the DNA templates. Unwinding proceeded until the acquisition of a high level of positive supertwists in the remaining duplex DNA inhibited further unwinding. Addition of topoisomerase I allowed further unwinding, opening >1 kb of DNA around oriS.
منابع مشابه
Physical interaction between the herpes simplex virus 1 origin-binding protein and single-stranded DNA-binding protein ICP8.
We had previously demonstrated that the herpes simplex virus 1 (HSV-1) single-stranded DNA-binding protein (ICP8) can specifically stimulate the helicase activity of the HSV-1 origin-binding protein (UL9). We show here that this functional stimulation is a manifestation of a tight interaction between UL9 protein and ICP8. By using protein-affinity chromatography, we have demonstrated the specif...
متن کاملAn initial ATP-independent step in the unwinding of a herpes simplex virus type I origin of replication by a complex of the viral origin-binding protein and single-strand DNA-binding protein.
Using a spectrophotometric assay that measures the hyperchromicity that accompanies the unwinding of a DNA duplex, we have identified an ATP-independent step in the unwinding of a herpes simplex virus type 1 (HSV-1) origin of replication, Ori(s), by a complex of the HSV-1 origin binding protein (UL9 protein) and the HSV-1 single-strand DNA binding protein (ICP8). The sequence unwound is the 18-...
متن کاملFunctional interaction between the herpes simplex virus type 1 polymerase processivity factor and origin-binding proteins: enhancement of UL9 helicase activity.
The origin (ori)-binding protein of herpes simplex virus type 1 (HSV-1), encoded by the UL9 open reading frame, has been shown to physically interact with a number of cellular and viral proteins, including three HSV-1 proteins (ICP8, UL42, and UL8) essential for ori-dependent DNA replication. In this report, it is demonstrated for the first time that the DNA polymerase processivity factor, UL42...
متن کاملCoordinated leading and lagging strand DNA synthesis by using the herpes simplex virus 1 replication complex and minicircle DNA templates.
The origin-specific replication of the herpes simplex virus 1 genome requires seven proteins: the helicase-primase (UL5-UL8-UL52), the DNA polymerase (UL30-UL42), the single-strand DNA binding protein (ICP8), and the origin-binding protein (UL9). We reconstituted these proteins, excluding UL9, on synthetic minicircular DNA templates and monitored leading and lagging strand DNA synthesis using t...
متن کاملFunctional order of assembly of herpes simplex virus DNA replication proteins into prereplicative site structures.
Herpes simplex virus replicates its DNA within nuclear structures called replication compartments. In contrast, in cells in which viral DNA replication is inhibited, viral replication proteins localize to punctate structures called prereplicative sites. We have utilized viruses individually mutated in each of the seven essential replication genes to assess the function of each replication prote...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 100 3 شماره
صفحات -
تاریخ انتشار 2003